
Technical Report ITL-96-6
July 1996

US Army Corps
of Engineers
Waterways Experiment
Station

APEX CM-VC and Reverse Engineering

by Pamela M. Woof, University of Memphis

mic

Approved For Public Release; Distribution Is Unlimited

19960924152

Prepared for Headquarters, U.S. Army Corps of Engineers

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use
of such commercial products.

® PRINTED ON RECYCLED PAPER

Technical Report ITL-96-6
July 1996

APEX CM-VC and Reverse Engineering
by Pamela M. Woof

University of Memphis
Memphis, TN 38152

Final report
Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

Monitored by U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

US Army Corps
of Engineers
Waterways Experiment
Station

HOWMUMAFmOCMTACT:

PUBUC AFFAIRS OFFICE
U.S. ARMY ENGINEER
WATERWAYS BEPEMMENT STATION
«H HAUS FERRY ROAD
vtcxssuro, nusassm DIIMI«
PHONE: («npM-aSB

, OF «BEmmaN - i? m **

Waterways Experiment Station Cataloging-in-Publication Data

Woof, Pamela M.
APEX CM-VC and reverse engineering / by Pamela M. Woof; prepared for

U.S. Army Corps of Engineers ; monitored by U.S. Army Engineer Waterways
Experiment Station.

26 p.: ill.; 28 cm. — (Technical report; ITL-96-6)
1. APEX (Computer program) 2. Computer software — Development. 3. Ada

(Computer program language) 4. Software configuration management. I. United
States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways
Experiment Station. III. Information Technology Laboratory (U.S. Army Engineer
Waterways Experiment Station) IV. Title. V. Series: Technical report (U.S. Army
Engineer Waterways Experiment Station); ITL-96-6.
TA7 W34 no.lTL-96-6

CONTENTS

Topic Page

Preface jv

Executive Summary 1

Apex Introduction 2

The View as a Work Space 2

Importing Foreign Text Files 4

Importing Between Views 5

CMVC 6

Rational Rose/Ada Interaction 6

Conclusion

Figures 1-10

7

ni

PREFACE

The development and fielding of large software systems has reached a level of complexity that
requires automated methods for keeping track not only of the development effort, but also, of the various
versions of the system deployed to users. These activities are characterized by the terms "configuration
management" and "version control." There are stand alone products available to perform these tasks
separately or together. It seems likely that such software will be more effective when integrated with the
original development environment rather than used in a stand alone fashion. This report considers the
integrated configuration management and version control available in the most complete integrated software
development system for Ada. It also briefly examines a graphical design tool capability, reverse engineering,
that is of value in maintaining and updating legacy code.

The Apex programming environment (from Rational Software Corporation) is a complete
development environment for producing programs in the Ada language. It is typically used in the
development of large systems that must meet strict reliability requirements among other things, and that are
expected to be long lived. This report is one of several documenting investigations into various aspects of its
use.

Rose/Ada is a graphical design tool used either in conjunction with Apex or as a standalone product.
The present interest, of course, is in its use as an integral part of the Apex system. It is a layered product
(also from Rational Software Corporation) that is executable from the tool menu within Apex.

This document is for persons looking at the Apex system for the first time, either for evaluation or
actual use of the system. It is not intended as a general introduction to Apex, however, but as an introduction
to only two of its many capabilities. The goal of this document is to introduce the reader to some of the
essential terminology and concepts used in Apex and Rose/Ada. This report is not intended to replace the
online tutorials or other documentation. (The new user, particularly, is strongly advised to work through the
tutorials in full.)

The reader is first introduced to the Apex environment. The interface is briefly discussed. The Apex
concept of a view is discussed at length. Views encourage intelligent separation of large projects into related
groups, and the view structure defines the interaction between the groups and the change and update
restrictions within a group. The procedure to import foreign text files into Apex views is described, and
sample results are included. Configuration management and version control within Apex is explained, and its
impact on Apex file management is discussed.

The discussion of Rose/Ada is limited to the diagrams produced through the Apex "reverse engineer"
function. The procedure to reverse engineer an existing system is discussed. As an example, an existing
system is used to generate diagrams, and the diagrams and their evolution is included.

This report was written for the U.S. Army Engineer Waterways Experiment Station (WES) by
Ms. Pamela M. Woof, University of Memphis, under Contract No. DACA39-94-K-0052, "Software
Engineering Improvement with Ada." This study was performed under the supervision of Dr. Windeil F.
Ingram, Chief, Computer Science Division, Information Technology Laboratory (ITL), WES, and
Dr. N. Radhakrishnan, Director, ITL.

IV

During publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was

COL Bruce K. Howard, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.

Executive Summary

Apex is an Ada development environment. This environment contains tools for developing
large software projects, including file management and control tools. Apex is designed to be a multi-
user environment, and includes file safeguards to lend stability to the development. The environment
also allows several versions of any Ada unit to be held in reserve, to be used in the future.

Apex divides the work area into subsystems that contain views. Views are the file access
mechanisms that coordinate the Ada files. All development work is performed within views. There
are several different kinds of views with differing levels of file management options and restrictions.

The configuration management and version control (CMVC) utility is used to limit file access
within view constraints. CMVC changes the system attributes of the files under its control so that
only Apex may make any modifications to the files. In addition, CMVC guarantees that each file may
only be changed or updated by one user or process at a time. CMVC also keeps track of old versions
of each file and makes these versions available for certain functions.

Rational Rose/Ada is an object oriented design diagramming tool for use with Ada programs.
Within Apex, Rose/Ada offers the option to build a module diagram for the Ada system being
developed. This automatic generation of diagrams can be very helpful in the review of a system.

This report is not intended to serve as an introduction to all of Apex. Included are discussions
of the view as a work space, importing foreign text files, importing between views, configuration
management and version control, and the interaction between Apex and Rational Rose/Ada. The
discussion of Rational Rose/Ada will be limited to the diagrams that are produced through the Apex
reverse engineer function.

Apex Introduction

Apex is an Ada development environment. It contains all the standard tools for development:
text editor, compiler, linker/binder, and debugger. In addition, Apex also includes facilities for file
management: creating and maintaining directories and files.

This environment is designed to develop large software projects and support a multi-user
environment. It includes options to safeguard files by making them accessible to only one user or
process at a time, and options to restrict changes to sets of files.

The Apex interface consists of multiple windows and is mostly menu driven. For each
window, the most used commands are located on a tool bar. When a command requires additional
information, a dialogue window is provided. In this window, Apex prompts for the needed
information, and many of the parameters may be selected from pick lists. All windows include the
option to exit Apex, and Apex cleans up all the windows it has generated before it exits. A well
designed tutorial and a help facility are available from any window.

The text editor provides Ada-specific editing, pretty-printing, and Ada specific analysis. The
pretty-printing maintains a consistent style between development units. The Ada specific analysis
includes some automatic correction of syntactic and semantic errors, and includes the option to
traverse to the page in the online Reference Manual for the Ada Programming Language that is
relative to the error. In addition, all coding may be accomplished from the menu in the text editor,
and errors are highlighted for immediate correction.

Apex divides the work area into subsystems. These subsystems exist physically as directories,
and act as Ada libraries. They are used to group related Ada files and to coordinate object files. Each
subsystem contains a set of views.

The View as a Work Space

All development is performed within views. A view is a file access mechanism within a
subsystem. It exists as a directory within the subsystem directory. The view keeps track of the active
version of each of its files, and makes other versions available for certain functions. Characteristics of
the view as a whole may be controlled within Apex, such as final compilation state and availability for
modification.

A view contains a set of related Ada files. A subsystem may contain several views of
different types without conflict. These views may contain the same units at different stages of
development, but units in one view cannot depend on units in another view in the same subsystem.
The multiple views are intended to be used for differing arrangements of versions of the same set of
units.

Two types of views exist in Apex: working and release. Both are groupings of related files.
Development occurs in working views, and release views are copies of working views that have
restrictions on modification. Both working and release views have the option of being designated
Interface Only when created; only specification units will be accepted into the view.

The working view has no restrictions on file access other than the standard CMVC control.
Files may be accessed and modified, and the active version of any file may be changed. Release
views have restrictions on the modification of included files. When files are imported into any view,
they are automatically updated to the goal state of that view.

Goal States

Each view has a goal state. The goal state is the level of investigation that Apex is to perform
on the code: archived, source, installed, coded or linked. When copying units from another view into
the current view, the unit is updated to the goal state of the current view.

When a new view is created, the default goal state is coded. When a view is copied, the copy
interface includes the option to change the goal state of the copy.

Archived code is not examined at all by Apex. This is usually code that is not ready to be
compiled.

Source code is parsed and syntactically completed. Ending punctuation such as right
parentheses, semicolons, closing quotation marks, and matching identifiers in the end statements of
loops, blocks, subprogram bodies, and packages are inserted, if missing. Parsing may also pretty print
the file by adjusting indentation level, line breaks, spacing, and capitalization.

Installed code is checked for semantic consistency. Type compatibility, correct subprogram
parameters, and declaration of all objects are checked. The code is also parsed and syntactically
completed.

Coded code has been parsed, syntactically completed, checked for semantic consistency, and
compiled into the subsystem. Coding creates the object code related to each unit. Apex recognizes
dependencies between units, and will make sure that all units required to successfully code the unit in
question are already included in the subsystem object files. If any required units are not already coded
into the subsystem, Apex will search for them and code them, if possible. If this is not possible, an
error message is returned.

Linked status means that an executable has been generated based on this component after it
has been coded. The linking command automatically searches for all required units and codes them
into the subsystem, if they are not already coded. If the required units cannot be found or cannot be
coded successfully, an error message is returned.

Release Views

Views may be either working or release. Working views contain Ada files that are still
evolving. When these files reach a stable level, they may be copied into a release view. The release
views are used to limit changes to the enclosed files, and have progressive levels of security.

Release views may be development, stable, or frozen. They are usually created by making a
copy of an existing working view and using the copy options to force the new copy to be a release

view with the desired characteristics.

Development release views are often used as integration areas, and promote stability by
prohibiting in-place editing. Units may be imported from other release views, and units may be
updated by accepting changes. All compilation commands are available, but in-place file changes or
deletions are not allowed. A development release may be changed to stable or frozen.

Stable release views are more restrictive than development views. They serve as an interim
step on the way to frozen release views. The only way to adjust the view's contents is to import from
another release view. All compilation commands are available. A stable release may be changed to
frozen or back to development if necessary.

Frozen release views are the most restrictive. No compilation commands or CMVC commands
are available. All directories and files are read-only. The only operation available in frozen views is
the importation of other frozen views. Once a view is set to frozen, it cannot be changed back to
stable or development. A frozen release view may be copied, and the attributes of the copy may be
changed to stable or development with copy options. If the copy option is not changed, the copy will
also be frozen and unchangeable.

Importing Foreign Text Files

Apex has a built in facility for translating Ada text files from other applications into files that
can be accepted into an existing view. This allows projects started in other environments to be moved
into the Apex environment with few difficulties.

One command from the Directory Viewer main menu, Import Text Files, is all that is needed.
The foreign files to be imported are selected and directed to an existing view, and Apex does the rest.
Apex will copy the text file into a new file with an Ada suffix (.Lada or .2.ada), and will analyze the
code according to the goal state of the view, usually by attempting to compile each file in the order of
their interdependencies. The best way to limit confusion is to have all of the text files to be imported
in one directory, and make sure that the target view exists. This way, there is no question which files
are text files and which files are Apex Ada files.

Apex does not recognize stub bodies, and will not be able to recognize garbage characters that
may be inserted at the end of the file by a file transfer protocol. Apex will recognize a file containing
several separates, and will accordingly break the file into individual Ada units in their own file
according to procedure or function name. Apex will return a list of the files that could not be
imported into the chosen view, and these files should be checked for stub bodies and garbage
characters.

Apex:
For example, the one file that contained the following list of procedures was imported into

separate (Db_Gate)
procedure Move_To_Directory is
procedure Create_Database is . . ,
procedure Open_Database is . . .

procedure CloseDatabase is . . .
function Database_Exists is . . .
function Is_Empty is . . .
procedure Put_Installation_Record is . . .
procedure Put_Project_Record is . . .
procedure Put_Narrative is . . .
procedure Update_Installation_Record is . . .
procedure Update_Project_Record is . . .
procedure Update_Narrative is . . .
procedure Get_Installation_Record is . . .
procedure Get_Project_Record is . . .
procedure Get_Narrative is . . .
procedure Set_Status is . . .

This file was broken into the following list of files that were accepted into the Apex system:

db_gate.close_database.2.ada
db_gate.create_database.2.ada
db_gate.database_exists.2.ada
db_gate.get_installation_record.2.ada
db_gate.get_narrative.2.ada
db_gate.get_project_record.2.ada
db_gate.is_empty.2.ada
db_gate.move_to_directory.2.ada
db_gate.open_database.2.ada
db_gate.put_installation_record.2.ada
db_gate.put_narrative.2.ada
db_gate.put_project_record.2.ada
db_gate.set_status.2.ada
db_gate.update_installation_record.2.ada
db_gate.update_narrative.2.ada
db_gate.update_project_record.2.ada

Importing Between Views

In a large software project, it is convenient to divide the project into smaller pieces. Each of
these pieces may be contained within their own subsystem, so Apex provides the ability to make units
in one subsystem visible to units in another. This facilitates arranging the project in groups of related
files that are more manageable.

Ada units may be made visible to other subsystems by means of an export/import set. These
sets are created within a view, and may contain the entire contents of the view or only selected units.
These imports effectively link the units of the export set to the importing view. As the units of the
export set are updated, the changes are visible to the importing view.

The default export set includes all of the units within the view. Multiple export sets can be
created within a view, but an importing view can only access one set from each exporting view. An

export set may be imported into another view in another subsystem, but not into a view within the

same subsystem.

Apex does allow views to import each other, but this should be approached with caution. This
option allows interdependencies among the groups of Ada units, and conflicts with the concept of
segregating the files by related functions.

CMVC

The configuration management and version control (CMVC) utility is used to limit file access
within views. CMVC changes the system attributes of the files under its control so that only Apex
may make any modifications to the files. In addition, CMVC guarantees that each file may only be
changed or updated by one user or process at a time.

Once CMVC accepts the control of a file, CMVC changes the system attributes of the file so
that it becomes read only to everyone except Apex. The only way to modify, copy, or delete these
files is to use the file maintenance commands within Apex. This control assures that the files will not
be haphazardly changed or deleted from outside of Apex.

The CMVC further controls access to files by requiring that a file must be "checked out"
before any modifications may be made to it. If the file is checked out by a user, no other user or
process may modify the file. When the file is checked back in, it is once again available for check
out, and is assigned a new version number. A new version is only created when the file is checked in.
A file may be checked out, modified and saved repeatedly, and checked back in, but a new version is
only recorded at the point of check in; all of the intermediate changes are lost.

The CMVC keeps track of all previous versions of each file, and these versions may be
accessed for various operations. With Object Tool: Set Version, the active copy of the file may be
selected from all of its past versions. Apex uses the active copy in compilation and linking with other
units. This function allows further development of a unit while an older version is still being used for
interface with other units.

The CMVC will compare two versions of the same file and show the differences between
them. There are two ways to find the differences between versions. Within the Set Version options,
highlighting two consecutive versions and selecting Control: Show: Differences will bring up a display
window with the file and the differences. Within the Directory Viewer, highlight the file to be
examined and select Control: Show: Differences. This will bring up a dialogue box in which any two
versions of the file may be selected for comparison. The window that opens as a result of either of
these commands has the file and all of the differences between the two versions highlighted. Lines
contained in the second version and not in the first will be highlighted in blue. Lines contained in the
first version and deleted from the second will be highlighted in red.

Rational Rose/Ada Interaction

Rational Rose/Ada is an object oriented design diagramming tool for use with Ada programs.
Within Apex, Rose/Ada offers the option to build a module diagram for the Ada system being

developed. This automatic generation of diagrams can be very helpful in the review of a system. The
discussion of Rational Rose/Ada will be limited to the module diagrams that are produced through the
Apex reverse engineer function.

When working with a large project, a graphical representation of the relationships between
units of code is often helpful in understanding and developing the project. This representation is often
called a module diagram. Apex has the capability to generate a module diagrams of its subsystems
and views.

After the files have been put into views, a command from the Directory Viewer menu is
required: Tools: Reverse Engineer. A dialogue box will appear and will prompt for the objects or
views to be engineered. The option "Include closure of views/units" will cause the diagram to include
all views and subsystems required for coding. The dialogue box will also prompt for the name of the
petal file to be generated. This file is read by Rose/Ada to generate the diagrams, and should have the
extension ".ptl".

After exiting Apex, Rational Rose/Ada should be run. Under the File menu, Import is the
correct choice. The dialogue box that appears prompts for a petal file, and offers the ability to
navigate the directory structure to obtain the file. When the petal file and "OK" are selected,
Rose/Ada reads the petal file. To view the diagrams, Browse: Module Diagram must be selected from
the main menu. The dialogue box that appears will have a list of subsystems, usually including the
subsystem that was to be diagrammed as well as the "lrm.ss" and "predefined.ss" as the Unix system
default base. The diagrams are saved as model files, and may be transferred to the DOS based
Rational Rose/Ada with no changes.

To illustrate the progression of the module diagrams, an Ada version of the Corps of
Engineers database program DB1383A will be used. All of the required units were loaded into one
view in a Apex subsystem. When Apex generates the module diagrams, it does not put the files in
any particular order. The file symbols are arranged in a diagonal line across the page so that the
dependency arrows are aligned (Figure 1). This representation is not very useful, so some rearranging
was attempted. The first attempt to group the symbols by function causes a confusing result (Figure
2).

A different approach was needed. The second attempt began by breaking DB1383A into
separate subsystems by topic: TUI, Textual User Interface screen generation packages distributed by
AdaSoft, Inc.; Admin, the administrative and driving packages; Entup, the interface to the database
packages; and Report, the report generating packages. The view importing options within the Apex
system were used to connect the subsystems to the required supporting packages. A subsystem
module diagram was then generated through Apex and loaded into Rose/Ada. The symbols of the
diagram were then rearranged to a legible pattern, as shown in Figure 3. Following this, each of the
views were reverse engineered, and their petal files imported into Rose/Ada. Some rearranging was
necessary, but the results were easily readable, as shown in the included figures.

Conclusion

The Apex system is easy to work with. The interface is menu driven, and most required
information can be selected from pick lists. The help facility is thorough in its coverage of topics.

The tutorial is designed to be worked in segments, and is connected directly to the help facility. The
subsystem and view arrangements encourage an object oriented approach to design. File integration is
handled automatically; the most difficult part is typing in the target view. The Rational Rose/Ada
interface is point and click. This system is designed to make software projects more manageable, and
Apex easily reaches this goal.

j- UsfHandler
 r-Hst-Üfilities

^Manager
Hities

-Nairative_
Manager

ng_
Kte

Utilities

ng_Forms
£.Graphs_

pnager
nin

JJtils

g_Menus
Tioot_

iew_
, 9_

■Report?_Graphs_
"enus

Figure 1. User generated modules for DB1383A

9

üst_Manager usl Handler Ust_Utllitles
Installati

Figure 2. Relationships of user generated modules for DB1383A

10

Irm.ss

tui.ss

report.ss admin.ss

predefined.ss

entup.ss

Figure 3. Subsystem relationships for DB1383A

11

Db Admin List Utilities Db Utilities Db Utilitie

Figure 4. Relationships within the Admin subsystem for DB1383A

12

Db Admin Db Utilitie

Schema

Figure 5. Relationships of specifications and driver within the
Admin subsystem for DB1383A

13

Project_Screen_

Enter_Update_

Funding Utilities Installation

i i
1 1 iii

1 i
1 1 1 i i

i !

FundingJJtilities Installation

Project_UTils

r^—\
3 i

ProjectJJtils

Figure 6. Relationships within the Entup subsystem for DB1383A

14

Project_Screen_

Enter_Update_

Narrative Funding_ Installation

Project_

3

Funding_Utilities lnstallation_

Project_Utils

Figure 7. Specifications within the Entup subsystem for DB1383A

15

Reports_Graphs_ Reports_Graphs_ Reporting_Forms

Reporting_

Screenview

Figure 8. Relationships within the Report subsystem for DB1383A

16

Reports_Graphs_

Point Shoot

Reporting_

Point Menus

Reporting_Forms

Reporting_Menus

TZ_ i

Screenview

J I

Figure 9. Specifications within the Report subsystem for DB1383A

17

Terminal lo Window

r~\

Forms Mana Menu_Manager

Figure 10. Relationships within the TUI subsystem from AdaSoft, Inc.

18

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, indud»ig the time for r8viewinginsmx*jns,sean^nge)ds^ data sourcss.gattwring and rmirtain^
the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, Including suggestions
for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Ariington, VA 22202-4302, and to the
Office of Management and Budget Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
July 1996

3. REPORT TYPE AND DATES COVERED
Final report

TITLE AND SUBTITLE
APEX CM-VC and Reverse Engineering

6. AUTHOR(S)
Pamela M. Woof

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

University of Memphis
Memphis, TN 38152

PERFORMING ORGANIZATION
REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)
U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199
US Army Corps of Engineers, Washington, DC 20314-1000

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Technical Report ITL-96-6

11. SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION/A VA1LABIUTY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Apex is an Ada development environment. This environment contains tools for developing large software projects,
including file management and control tools. Apex is designed to be a multiuser environment, and includes file safeguards to
lend stability to the development. The environment also allows several versions of any Ada unit to be held in reserve, to be
used in the future.

Apex divides the work are into subsytems that contain views. Views are the file access mechanisms that coordinate the
Ada files. All development work is performed within views. There are several different kinds of views with differing levels
of file management options and restrictions.

The configuration management and version control (CMVC) utility is used to limit file access within view constraints.
CMVC changes the system attributes of the files under its control so that only Apex may make any modifications to the files.
In addition, CMVC guarantees that each file may only be changed or updated by one user or process at a time. CMVC also
keeps track of old versions of each file and makes these versions available for certain functions.

Rational Rose/Ada is an object oriented design diagramming tool for use with Ada programs. Within Apex, Rose/Ada
offers the options to build a module diagram for the Ada system being developed.
 (Continued)
14. SUBJECT TERMS

Ada
Apex

Configuration Management Version Control
Waterways Experiment Station

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

26

16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
296-102

13. (Concluded).

This automatic generation of diagrams can be very helpful in the review of a system
This report is not intended to serve as an introduction to all of Apex. Included are discussions of the view as a

work space, importing foreign text files, importing between views, configuration management and version control,
and the interaction between Apex and Rational Rose/Ada. The discussion of Rational Rose/Ada will be limited to
the diagrams that are produced through the Apex reverse engineer function.

